Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shu-Sheng Zhang,* Xiao-Ru Zhang, Min-Hua Xu and Xue-Mei Li

College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong,
People's Republic of China
Correspondence e-mail: shushzhang@126.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.065$
$w R$ factor $=0.191$
Data-to-parameter ratio $=13.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Tris(2-azidoethyl) benzene-1,3,5-tricarboxylate

In the title molecule, $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{9} \mathrm{O}_{6}$, all bond lengths and angles are within normal ranges. In the crystal structure, molecules are linked into centrosymmetric dimers by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

Azides are used to synthesize triazole or tetrazole derivatives, which frequently exhibit significant biological activity and, as a consequence, have found a wide variety of applications as active heterocycles in pharmacy and agriculture (Ostrovskii \& Koren, 2000; Nomiya et al., 2000). As part of our studies of triazoles, the title compound, (I), was synthesized by the reaction of 1,3,5-tricarboxylbenzoic acid and 2-azidoethanol.

All bond lengths and angles in (I) are within normal ranges (Allen et al., 1987). The dihedral angles between the benzene ring and the three azide groups (N1-N3/C9, N4-N6/C15 and

Figure 1
The molecular structure of (I), showing 50% probability displacement ellipsoids.

Received 6 January 2006
Accepted 11 January 2006
\qquad

N7-N9/C12) are 86.8 (3), 47.3 (4) and 41.5 (4) ${ }^{\circ}$, respectively. In the crystal structure, molecules are linked into dimers (Fig. 2) by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2).

Experimental

A mixture of benzene-1,3,5-tricarboxylic acid ($1.0 \mathrm{~g}, 5 \mathrm{mmol}$) and thionyl chloride (3 ml) was refluxed for 3 h . To this solution were added 2-azidoethanol ($1.37 \mathrm{~g}, 15 \mathrm{mmol}$) and triethylamine (2.17 ml , $16 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$. The mixture was stirred overnight at 323 K and then filtered. Evaporation of the solvent left a crude yellow solid; this was followed by chromatographic purification on a silicagel column using an ethyl acetate-petroleum ether ($1: 8 \mathrm{v} / \mathrm{v}$) mixture as eluant. Colourless single crystals suitable for X-ray crystallographic analysis were grown by slow evaporation of an ethyl acetate solution of (I).

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{9} \mathrm{O}_{6} \\
& M_{r}=417.36 \\
& \text { Triclinic, } P \overline{1} \\
& a=6.7391(9) \AA \\
& b=10.6986(14) \AA \\
& c=14.5075(19) \AA \\
& \alpha=100.108(2)^{\circ} \\
& \beta=98.961(2)^{\circ} \\
& \gamma=106.181(2)^{\circ} \\
& V=965.5(2) \AA^{\circ}
\end{aligned}
$$

$$
Z=2
$$

$$
D_{x}=1.436 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 1412

reflections

$\theta=2.2-24.5^{\circ}$
$\mu=0.12 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.21 \times 0.11 \times 0.09 \mathrm{~mm}$

Data collection

Siemens SMART 1000 CCD areadetector diffractometer ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.976, T_{\text {max }}=0.990$
5138 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.065$
$w R\left(F^{2}\right)=0.191$
$S=1.03$
3718 reflections
271 parameters
H -atom parameters constrained

Figure 2
Unit-cell projection along the a axis. Hydrogen bonds are indicated by dashed lines.

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 8-\mathrm{H} 8 A \cdots \mathrm{O}^{\mathrm{i}}$	0.97	2.58	$3.175(3)$	120

Symmetry code: (i) $-x+1,-y+1,-z+2$.

All H atoms were located in difference Fourier maps and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range 0.93-0.97 \AA and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for all H atoms.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

This project was supported by the Project of Educational Administration of Shandong Province (No. J04B12) and the Outstanding Adult-Young Scientific Research Encouraging Foundation of Shandong Province (No. 2005BS04007).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Nomiya, K., Noguchi, R. \& Oda, M. (2000). Inorg. Chim. Acta, 298, 24-32.
Ostrovskii, V. A. \& Koren, A. O. (2000). Heterocycles, 53, 1421-1448.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

